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We present simulation results for supercontinuum generation using As2S3 chalcogenide photonic crystal fibers.
We found that more than 25% of input power can be shifted into the region between 3 μm and 5 μm using a pump
wavelength of 2 μm with a peak power of 1 kW and an FWHM of 500 fs. The broad dispersion profile and high
nonlinearity in As2S3 chalcogenide glass are essential for this application. © 2010 Optical Society of America
OCIS codes: 060.2280, 060.2390, 320.6629.

Generating light in the mid-IR region has drawn much at-
tention recently. This light can be used for a wide variety
of military, medical, and sensing applications [1]. Super-
continuum generation uses the Kerr and Raman effects in
optical fibers to broaden the bandwidth of an optical sig-
nal [2]. It could also potentially generate light in the mid-
IR region. Price et al. [3] have demonstrated theoretically
that it is possible to generate a mid-IR supercontinuum
from 2 to 5 μm using a bismuth glass photonic crystal fi-
ber (PCF). Domachuk et al. [4] have experimentally gen-
erated a mid-IR supercontinuum with a spectral range of
0.8 to 4:9 μm using a tellurite PCF. However, the amount
of power generated in the wavelength range between
3 μm and 5 μm using a pump source at a wavelength
of 2 μm is less than 5% [3]. A pump wavelength of 2 μm
is important because fiber lasers can generate wave-
lengths up to 2 μm with a peak power of 5 kW and are
thus a good source of supercontinuum generation [5].
Prior work has been done using chalcogenide wave-

guides or fibers to generate a supercontinuum at wave-
lengths below 2 μm [6–9]. In this Letter, we show that
more than 25% of the input power can be shifted into
the region between 3 μm and 5 μm using a As2S3 chalco-
genide PCF with an input wavelength of 2 μm and an in-
put peak power of 1 kW. The principal mechanisms that
generate a supercontinuum are soliton fission and the so-
liton self-frequency shift. The strength of the nonlinearity
and the breadth of the anomalous dispersion regime both
contribute to the relatively large amount of power that
can be obtained between 3 μm and 5 μm. The nonlinear
refractive index of As2S3 chalcogenide glass is 1 order
higher than that of bismuth glass [3]. The anomalous dis-
persion regime for As2S3 chalcogenide PCF can extend
from 2 μm to 6 μm, while Fig. 5 in [3] shows that the
anomalous dispersion regime ranges from 1:5 μm to
3 μm in bismuth glass fiber, so that it is only possible
to generate a small amount of power in the wavelength
region between 3 μm and 5 μm. Tellurite glass has a high
loss above 3 μm [4]. Both As2Se3 and As2S3 chalcogenide
glass have low loss in the mid-IR region [10], but they
have different material dispersions. The material zero-
dispersion wavelength (ZDW) for As2S3 is lower than
the material ZDW for As2Se3 [11]. At a wavelength of

2 μm, As2S3 PCFs have anomalous dispersion, while
As2Se3 PCFs have normal dispersion. Hence, one would
expect to generate a much wider supercontinuum by
using an As2S3 PCF with a pump wavelength of 2 μm
in the anomalous dispersion region [2].

In a prior work, we maximized the bandwidth that can
be obtained using supercontinuum generation in an
As2Se3 chalcogenide PCF with a pump that uses an op-
tical parametric amplifier at a wavelength of 2:5 μm [11].
We showed that one can generate more than 4 μm of a
relatively flat spectrum using four-wave mixing in a com-
bination of self-phase modulation and the soliton self-
frequency shift [11]. In this Letter, instead of aiming
for a wide spectrum, we want to generate a light source
in the range between 3 μm and 5 μm using a fiber laser of
2 μm. In a prior brief meeting report, we showed that
more than 25% of the input power can be shifted into
the region between 3 μm and 5 μm [12]. In this Letter
we give, for the first time (to our knowledge), a detailed
prescription for maximizing the power in the region be-
tween 3 μm and 5 μm using an As2S3 chalcogenide PCF,
including the dependence on the input power.

We model the light generation between 3 μm and 5 μm
in two stages. Our goal is to find an optimized pitch of
PCF that maximizes the power between 3 μm and 5 μm.
We set the ratio of the hole diameter to pitch, d=Λ,
to 0.4, so that the fiber is single mode [11,13].

In the first stage, we determine the chromatic disper-
sion in the fiber, given the material dispersion and PCF
geometry. The refractive index of the As2S3 chalcogenide
glass was measured at the Naval Research Laboratory by
ellipsometry [14]. The PCF has five layers of air holes in a
hexagonal structure. We calculated the effective index
using COMSOL Multiphysics, a commercial full-vector
mode solver based on the finite-element method. We then
used the effective index to calculate the total dispersion,
which includes waveguide dispersion and material dis-
persion. Figure 1 shows the total dispersion versus
wavelength with a pitch of 2 μm, 3 μm, and 4 μm.

In the second stage, we solve the generalized nonlinear
Schrödinger equation described in [11]. The model used
in this Letter is the same as in [11], except that the non-
linear refractive index, the dispersion versus wavelength,
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and the Raman response function are different. For
the nonlinear refractive index n2, we used n2 ¼
4:2 × 10−18 m=W at a wavelength of 2 μm, which we
obtained from Table 1 of [15] and Fig. 5 of [16]. The
Raman gain for As2S3 chalcogenide fibers used in our
simulation was measured at the Naval Research
Laboratory [17]. In Fig. 2, we show the material loss
for an As2S3 chalcogenide fiber, measured at the Naval
Research Laboratory, which has a low loss region be-
tween 2 μm and 6 μm. The material loss peak around
the wavelength of 4 μm is due to H-S impurities.
We used this two-stage procedure to find an optimized

pitch of the As2S3 chalcogenide PCF that maximizes the
generated power in the wavelength range between 3 μm
and 5 μm. We set the length of the fiber to be 0:5 m.
Figure 3 shows the ratio of the power generated between
3 μm and 5 μm to the total input power as a function of
pitch. The input signal is a hyperbolic-secant pulse with
a peak power of 1 kW and an FWHM of 500 fs. More than

25% of the input power is shifted into the region between
3 μm and 5 μm when the pitch is between 2:8 μm and
3:2 μm. The main mechanisms for supercontinuum gen-
eration are soliton fission and the soliton self-frequency
shift. For a pitch of 2 μm, the dispersion quickly decreases
beyond a wavelength of 2:5 μm, as shown in Fig. 1. The
wavelength shift due to the soliton self-frequency shift
has been shown to be proportional to the dispersion
[18]. Hence, a PCF with a small pitch cannot generate
much power at wavelengths that are higher than 2:5 μm,
and the power generated between 3 μmand 5 μm is small,
as shown in Fig. 3. A fiber with a larger pitch will have a
larger effective mode area and a smaller nonlinearity,
leading to a small amount of supercontinuum generation.
Hence, a fiber with a larger pitch will generate a small
amount of power between 3 μm and 5 μm, as is shown
in Fig. 3. Figure 4 shows the spectrum of the superconti-
nuum generation using a PCF with Λ ¼ 3 μm.

Figure 5 shows the total generated power in the re-
gion between 3 μm and 5 μm and the ratio of the total
generated power to the total input power as a function

Fig. 1. (Color online) Blue dashed, dotted, and dashed-dotted
curves represent the dispersion as a function of wavelength for
a pitch of 2 μm, 3 μm, and 4 μm, respectively. The red solid
curve shows the material dispersion. The black dashed line in-
dicates zero dispersion.

Fig. 2. (Color online) Material loss for As2S3 chalcogenide
fiber.

Fig. 3. (Color online) Ratio of power generated between 3 μm
and 5 μm to the total input power as a function of pitch.

Fig. 4. (Color online) Spectrum of the supercontinuum
generation using an As2S3 chalcogenide PCF with Λ ¼ 3 μm.
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of the FWHM of the input pulse. When the pulse width
increases, the total generated power increases almost lin-
early. The ratio of the total power generated between
3 μm and 5 μm to the total input power is between
15% and 25% for all pulse widths that we investigated,
as shown in Fig. 5. Figure 6 shows the total generated
power in the region between 3 μm and 5 μm and the ratio
of the total generated power to the total input power as a
function of input peak power. The total generated power
increases almost linearly when the peak power is be-
tween 0.2 and 1:5 kW. However, the ratio of the total gen-
erated power to the total input power increases until the
peak power reaches 0:8 kW. The roughly linear increase
in the total generated power as the FWHM or peak power
of the input pulse increases yields a relatively constant

ratio of the total generated power to the total input
power, as we show in Figs. 5 and 6.

In conclusion, we have shown that it is possible to use
supercontinuum generation in an As2S3 chalcogenide
PCF with an input wavelength of 2 μm, an input FWHM
of 500 fs, and a peak power of 1 kW to shift more than
25% of input power into a region between 3 μm and 5 μm.
We optimized the waveguide and pulse parameters, and
we found Λ ¼ 3 μm, an input FWHM of 500 fs, and a
peak power of 1 kW. The broad dispersion profile and
high nonlinearity in As2S3 chalcogenide glass are essen-
tial for this application.

The authors thank R. J. Weiblen for useful
comments.
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Fig. 5. (Color online) Total generated power in the region be-
tween 3 μm and 5 μm and the ratio of the total generated power
to the total input power as a function of the FWHM of the input
pulse. The input peak power is fixed at 1 kW. The pitch of the
As2S3 chalcogenide PCF is set to 3 μm.

Fig. 6. (Color online) Total generated power in the region be-
tween 3 μm and 5 μm and the ratio of the total generated power
to the total input power as a function of the input peak power.
The FWHM of the input pulse is fixed at 500 fs. The pitch of the
As2S3 chalcogenide PCF is set to 3 μm.
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