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Self-stabilized quantum optical Fredkin gate
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The quantum optical Fredkin gate is an indispensable resource for networkable quantum applications. Its perfor-
mance in practical implementations, however, is limited fundamentally by the inherent quantum fluctuations of the
pump waves. We demonstrate a method to overcome this drawback by exploiting stimulated Raman scattering in
fiber-based implementations. Using a Sagnac fiber-loop switch as a specific example, we show that high switching
contrast can be maintained even in the presence of significant pump fluctuations. This unique feature of self-
stabilization, together with high-speed and low-loss performance of such devices, point to a viable technology

for practical quantum communications.
OCIS codes: 270.5565, 130.4815, 120.5790.

All-optical information processing architectures, particu-
larly those exploiting quantum features of single photons,
promise significantly higher speed, lower energy cost,
and much larger capacities than existing electronic-
based designs [1,2]. Crucial to implementing such archi-
tectures is the capability to route photonic signals with
low loss, low noise, and without disturbing their quantum
states. There exist two basic types of switching devices
that can potentially fulfill these requirements. The first is
based on a microcavity design, utilizing the optically
induced quantum-Zeno effect [3-5]. The second type is
a traveling-wave design that exploits cross-phase modu-
lation (XPM) in a Fredkin-gate setup, or its derivatives
[6-10]. Comparatively, the Fredkin-gate switches do
not require high-@ optical cavities and can thus be more
convenient and robust for practical use. Recently, a
Sagnac fiber-loop implementation of such switches has
been developed, demonstrating ultrafast redirection of
quantum-entangled photonic signals with low loss, and
without introducing any measurable degradation in the
entanglement fidelity [11].

The performance of all-optical switches of the Fredkin-
gate design, however, is fundamentally restricted by the
fluctuations in the power of the pump waves that drive
the XPM process, resulting in reduced switching contrast
[7,12]. To address this issue, use of sub-Poissonian pump
pulses with suppressed power fluctuations has been
proposed [13]. However, such pump pulses are hard to
generate experimentally. In this Letter, we propose an
avenue to overcoming this fundamental difficulty by
exploiting the inherent nonlinearity of the optical med-
ium constituting the Fredkin-gate switch. Using a Sagnac
fiber-loop switch as a concrete example [11], we show
how self-stabilized switching can be obtained even when
significant pump fluctuations are present. As a result, no
precise control over the pump power is needed while still
achieving high switching contrast. Our theory agrees
with experimental data without the need for any fitting
parameter. The results can be generalized to all
quantum-optical Fredkin gates based on XPM.

A schematic setup of the Kerr-nonlinear Sagnac fiber-
loop switch is shown in Fig. 1. Detailed description
of such devices can be found in Refs. [14] and [15].
Basically, it switches input signal waves between the
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transmission and reflection ports depending on the pre-
sence or absence of control pump waves. In order to
achieve polarization-insensitive switching, two orthogon-
ally polarized pumps of the same power are applied
simultaneously [14]. The pumps are slightly detuned
from each other within the correlation bandwidth of
polarization-mode dispersion in the fiber, so as to remain
orthogonally polarized for the duration of XPM [16].
Under this condition, the signal experiences XPM
effectively from a single polarized pump, and thus the
entire system can be modeled with a pump wave that
is copolarized with the signal.

In our system, the pump pulse propagation can be
described by the following generalized nonlinear
Schrédinger equation (GNLS) [17,18],
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where A(z, ?) is the electric-field envelope as a function of
distance z along the fiber and retarded time ¢. The para-
meter o, is angular carrier frequency and a describes
the fiber loss, set as aye /* 4+ ay/A* to include the
infrared absorption and Rayleigh scattering, with
a, =5x 10" dB/km, ap =49 pm, and a; = 0.8 pm? -
dB/km for SMF-28 [17,19]. In Eq. (1), the parameter
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Fig. 1. (Color online) Schematic of the fiber-loop switch based
on the Kerr-nonlinear Sagnac effect.
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¥y = Nywy /cAi(w) is the Kerr coefficient, where n, =
2.2 x 10" m?/W is the nonlinear refractive index [17],
¢ is the speed of light in vacuum, and A« (w) is the fre-
quency-

dependent effective area of the fiber, which is calculated
for the linearly polarized LP,; mode of the SMF-28 with
core diameter of 8.2 ym, cladding refractive index of
1.444, and core-cladding index difference of 0.36%
[17,20]. The nonlinear response function, R(?) =
(1 -fRr)6(t) + frhg(t), includes both the Kerr (instanta-
neous), 6(t), contribution and the Raman (delayed),
hp(t), contribution. We use the Raman response function
as  hgp(t) = [(«3 + 13) /7 173] exp(~t/72) sin(t/7;), where
71 = 12.2 fs and 7, = 32 fs [21]. We set fr = 0.18 and 0
to simulate the cases with and without the Raman effect,
respectively. We use D(1) = Sy(4 - 143/2%) /4 to approxi-
mate the dispersion in the SMF-28, where S, = 0.08 ps/
(nm®-km) and 4y = 1313 nm [20]. From this dispersion
formula, we obtain the Taylor-series expansion coeffi-
cients at 1550 nm: S, = 19 ps?/km, f5 = 0.11 ps®/km,
and B4 = 1.6 x 10* ps*/km. We found via simulation that
the contribution of higher-order dispersion to the pump-
pulse dynamics is negligible.

The phase shift induced by the pump is then calculated
using the standard coupled equations [9]. The normalized
transmission (7)) and reflection (R) are calculated using
Eq. (8) of Ref. [15]. Figures 2(a) and 2(b) show the simu-
lation and experimental results with 5 ps full width at
half-maximum (FWHM) Gaussian pump pulses for fiber
lengths of 100 and 500 m, respectively. The red dashed
and green solid curves show the 7" and R with and with-
out the Raman effect, respectively. As shown, in both
cases, the simulation results agree well with the
experimental data at low pump-pulse energies. When
the energy approaches 2.5 nJ, however, the simulation
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Fig. 2. (Color online) Experimental and simulation results of
switching probabilities versus pump-pulse energy for fiber
lengths of (a) 100 m and (b) 500 m.
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results without the Raman effect diverge from the
experimental data, predicting a sinusoidal behavior.
Taking the Raman effect into account, on the other hand,
makes the simulation results to follow the experimental
data throughout all the pump-pulse energies we studied
for both fiber lengths, showing that the switching prob-
ability flattens out as the pump-pulse energy increases
beyond the peak-switching point.

The different switching behaviors seen in Fig. 2 indi-
cate clearly the important role of stimulated Raman scat-
tering (SRS) in our device. Indeed, in the region of high
pump-pulse energies, SRS causes energy loss from the
pump pulses by shifting them to red-detuned wave-
lengths [17]. Higher the pump-pulse energy, stronger is
the SRS, leading to correspondingly higher loss for the
pump. Consequently, the XPM phase shift and the result-
ing switching contrast, which are proportional to the
pump-pulse energy, can remain almost constant because
of the flattening out behavior shown in Fig. 2. We note
that such Raman effect cannot be interpreted as in-
creased fiber loss at longer wavelengths. In fact, our
simulations (not presented here) show that even assum-
ing wavelength-independent fiber loss, the same saturat-
ing switching behavior persists.

Because of the Raman effect, the switching contrast
saturates at high pump-pulse energies, making the
fiber-loop switch insensitive to pump-energy fluctua-
tions. Hence, there will be a wider range of the input
pump-pulse energy that produces, for example,
T > 95%. For a fiber length of 100 m, the case shown
in Fig. 2(a), the energy span is about 0.65 nJ, from
1.96 to 2.61 nJ, without the Raman effect. With the Raman
effect, in contrast, the energy span increases to 0.75 nJ,
from 2 to 2.75 nJ. Figure 3 shows the energy span for
T > 95% with and without the Raman effect. Green, blue,
and red curves represent the energy span for input pump-
pulse widths of 4, 5, and 6 ps, respectively. Note that for a
shorter pulse width, the peak pump power is larger for
the same pulse energy, producing a larger nonlinearity
and SRS in pulse propagation. Hence the increase in
the energy span due to SRS is more significant for the
shorter pump pulses. According to our simulations, the
energy span increases by about 40% for an input
pump-pulse width of 4 ps and a loop length of 500 m,
making the switching behavior more insensitive to
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Fig. 3. (Color online) Energy span for 7' > 95% with (dashed)

and without (solid) the Raman effect. The legend shows the dif-
ferent input pump-pulse widths. Note that the energy spans
without the Raman effect are almost the same for all pulse
widths.
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Fig. 4. (Color online) Normalized power of the pump wave in
time domain for a fiber length of 100 m. The inset shows the
detailed pulse shape for the soliton in the time window between
63 and 64.5 ps.
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Fig. 5. (Color online) Temporal and spectral evolution during

pump-pulse propagation, plotted on a log scale clipped at

—-40 dB relative to the maximum.

fluctuations in the pump-pulse energy. Even more
significant improvements can be achieved for shorter
pump pulses.

For a better understanding of the SRS effect, in Fig. 4,
we show the normalized power of the pump wave in the
time domain after propagating through a fiber length of
100 m. As shown, the pump pulse spreads out much
wider with the Raman effect than without. This result
is well explained by the temporal and spectral evolution
of the pump pulses in the presence of SRS in propagation,
as shown in Fig. 5. We note that within the first 10 m of
fiber, the initial stage of propagation is dominated by ap-
proximately symmetrical spectral broadening due to
self-phase modulation. As a result, in the time domain,
the pulse is compressed. Around the distance of 20 m,
the spectral broadening becomes strongly asymmetrical
with the development of distinct spectral peaks due to
the soliton fission effect [22]. After the 20 m of propaga-
tion, the spectrum shows clear continuous redshift

of the long-wavelength components due to soliton
self-frequency shift induced by the Raman effect [23].
In time, the pulses shifted to the longer wavelength also
propagate slower than the pulses with shorter wave-
length because of the anomalous group-velocity disper-
sion in the fiber.

In summary, we have demonstrated that by utilizing
SRS, a self-stabilized quantum optical Fredkin gate can
be realized in a fiber-loop setup. As a result, high switch-
ing contrast can be maintained without the need for pre-
cise control of the pump-pulse energy. Our theory agrees
well with experimental data without the need for any fit-
ting parameter. The theoretical and experimental results
highlight the potential of a practical technology for imple-
menting networkable quantum applications.
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