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Abstract We study the resonant wavelength of nanograt-
ing structures covered by a dielectric medium. We find that
the resonant wavelength oscillates as the thickness of the
thin dielectric layer increases due to the cavity formed by
the dielectric layer. The amplitude of this oscillation in the
resonant wavelength is small when the minimum reflection
occurs in the nanograting structure. For a plasmonic sen-
sor covered by a dielectric medium, a small oscillation in
the resonant wavelength as the thickness of the dielectric
medium changes is preferred. We also study the impact of a
rounded corner on the resonant wavelength and find that the
rounded corners with a small radius of r effectively reduce
the nanogroove depth by about 0.2r . Results from the finite-
difference time-domain (FDTD) method agree very well
with the phase-matching condition, using parameters cal-
culated from the rigorous coupled-wave analysis (RCWA)
method. These results will lead to a better understanding
of the accuracy of plasmonic sensors covered by dielectric
media.
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Introduction

Surface plasmons are charge density oscillations that exist
at the interface of two materials, which have dielectric con-
stants of opposite signs, such as a metal and a dielectric
medium [1]. Surface plasmon resonances are of particular
interest because of the high optical field confinement at the
resonant wavelengths. When a metal surface is in contact
with a dielectric medium, the resonant wavelengths for sur-
face plasmon waves are very sensitive to the refractive index
of the dielectric medium [2–4]. By studying the resonant
wavelength, one is able to determine the refractive index of
a dielectric medium on top of a plasmonic structure. Hence,
plasmonic sensor devices can be used in the next generation
of biosensors for fast, real-time identification of biomark-
ers in new health-care programs [5–8]. Many successful
sensors have been implemented in biosensor applications
using the resonant wavelength [9–20]. Significant progress
has been made using the resonant wavelengths of different
metal structures. However, a detailed analysis of dielectric
layer thickness, which may have a strong impact on the res-
onant wavelength [21], has not been thoroughly conducted.
Measurements may be inaccurate due to variations in the
thickness of the dielectric layer. The interaction between
fields in the dielectric layer and fields at the metal sur-
face will impact the resonant wavelength of a sensor device.
These phenomena may potentially decrease the accuracy of
a plasmonic sensor.

In this paper, we analyze simple and commonly used
plasmonic nanograting structures covered by a dielectric
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layer. Nanograting structures have been shown to have
a high enhancement factor on electromagnetic fields at
the resonant wavelength [17–20]. We first use the finite-
difference time-domain (FDTD) method to study resonant
wavelengths of nanograting structures. We find that reso-
nant wavelengths determined using the FDTD method agree
very well with the phase-matching condition, using coeffi-
cients calculated with the rigorous coupled-wave analysis
(RCWA) method [22–24]. Then, we study the resonant
wavelength of a nanograting structure covered by a thin
dielectric layer. We find that, because of the cavity formed
in the dielectric layer, the resonant wavelength oscillates
with the increase of the thickness of the dielectric medium.
For a plasmonic sensor covered by a dielectric medium, a
small oscillation in the resonant wavelength as the thickness
of the dielectric medium changes is preferred. This reduces
measurement error due to uncertainty of the thickness of the
dielectric medium. We also study the impact of a rounded
corner in the nanograting structure on the resonant wave-
length. We determine that the rounded corners with a small
radius of r effectively reduce the nanogroove depth by about
0.2r . These results will lead to a better understanding of
the accuracy of plasmonic sensor devices covered by dielec-
tric media. The results may be generalized to other types of
plasmonic devices.

Structures and Modeling

In this paper, we consider a nanograting structure, as shown
in Fig. 1a. The nanograting period, nanogroove width, and
nanogroove depth are denoted as �, w, and d , respectively.
The nanograting structure is infinitely long and invariant in
the y-direction. In the simulation, we use the FDTD solver
from Lumerical to calculate light scattering in the nanograt-
ing structure. The simulation uses experimentally measured
refractive indices of gold [25]. The refractive index of air
is 1. The incident plane wave propagates from the top
of the device with transverse magnetic (TM) polarization
(magnetic vector along the invariant y-direction). We use
periodic boundary condition on the boundaries in positive
and negative x-directions. The reflection monitor is located
behind the light source to collect all the reflected light.
Figure 1b shows reflection, R, and absorption, A, on the
nanograting structure, with w = 60 nm, d = 90 nm, and
� = 560 nm. The same nanograting parameters as in [26]
are used here. We set A = 1−R, with a thick Au nanostruc-
ture substrate. The incident plane waves excite the surface
plasmonic waves at the interface between air and the Au
nanograting structure. We determine that the resonant wave-
length for this structure is approximately 840 nm, as shown
in Fig. 1b. Resonance occurs when the localized surface

Fig. 1 a Schematic illustration of nanograting. b Reflection and
absorption when w = 60 nm, d = 90 nm, and � = 560 nm

plasmon modes in nanogrooves satisfy the phase-matching
condition [27]:

2k0Re(neff)d + arg(ra) + arg(rm) = 2mπ, (1)

where ra and rm are reflection coefficients of the funda-
mental surface plasmon modes at the upper and lower ends
of the nanogroove array, respectively, as shown in Fig. 2a.
We use RCWA to calculate the reflection coefficients ra and
rm as functions of wavelength and nanogroove width, as
shown in Fig. 2b, c, respectively. The function arg(x) rep-
resents the argument or phase of a complex number x. In
Fig. 2b, with a narrower groove width, the fields are mainly
located near the nanogroove and the structure yields smaller
phase delays for the reflection coefficient, ra , at the upper
end of the groove. The reflection coefficient at the metal
end of the groove, rm, stays almost the same. Note the π

phase shift is included in the reflection from the metal sur-
face. In Fig. 2c, as the wavelength increases, the relative
width becomes narrow, which yields less phase delay on the
long wavelength side. The value, m, is a positive integer
in Eq. 1. The value, neff, represents the effective index of
the surface plasmon fundamental mode in the nanogrooves.



Plasmonics (2015) 10:419–427 421

Fig. 2 a Schematic of the reflection coefficients, ra and rm. Phase delay of ra and rm for b different groove widths and c different wavelengths

This surface plasmon mode in the nanogroove structure can
be approximated by the mode in a metal-insulator-metal
(MIM) structure with an infinitely long nanograting depth
and pitch. The characteristic equation for the MIM structure
is, tanh(kiw/2) = −εikm/(εmki), where w is the insula-
tor width [28, 29]. The wave vectors in the air and metal,
perpendicular to the interfaces, ki and km, are defined as
ki = (β2 − k2

0εi)
1/2 and km = (β2 − k2

0εm)1/2, respec-
tively. Note that β, εi , and εm are the propagation constant,
permittivity of insulator, and permittivity of metal, respec-
tively. Figure 3 shows the real part of the effective index,
Re(neff) = Re(β)/k0, as a function of wavelength and
nanogroove width. Note that k0 = 2π/λ is the wave number
in vacuum.

With the parameters for the nanograting structure, we
are able to calculate the resonant wavelength to satisfy the
phase-matching condition. In Fig. 4, solid lines show res-
onant wavelength as a function of nanogroove width and
depth, derived using FDTD simulations. We can see that res-
onant wavelength increases as nanogroove depth increases
[30]. However, resonant wavelength does not change much
when the nanogroove width changes. To confirm the results
of FDTD simulations in Fig. 4, we calculate resonant wave-
length as a function of groove width indicated by blue
circles, using the phase-matching condition in Eq. 1. Reflec-
tion coefficients are calculated by the RCWA method as

shown in Fig. 2. Note that nanogroove width does not
directly exist in Eq. 1. The increase in nanogroove width
from 60 to 120 nm only indirectly leads to a decrease in
the neff from 1.42 to 1.22, as shown in Fig. 3b. Hence, res-
onant wavelength slightly decreases when the nanogroove
width increases and neff decreases according to the phase-
matching condition in Eq. 1. To determine values marked
by red circles, we calculate neff, ra , and rm as a func-
tion of the resonant wavelength. Then, depth, d , can be
determined using Eq. 1, shown as red circles in Fig. 4. Alter-
natively, one could use depth, d , to determine the resonant
wavelength, assuming neff, ra , and rm are wavelength-
independent parameters. However, this will result in an
approximate 10 % error in the resonant wavelength because
neff, ra , and rm vary with the resonant wavelength. We use a
pitch of 560 nm for the Fig. 4. If pitch changes, the resonant
wavelength varies as ra and rm vary with pitch.

Thickness of the Dielectric Layer

Now, we study a nanograting structure covered by a dielec-
tric medium, such as liquid, as shown in Fig. 5. The
nanograting period, nanogroove width, and nanogroove
depth are denoted as �, w, and d , respectively. The thick-
ness of the dielectric medium, t , is defined as the distance

Fig. 3 a The real part of the
effective index, neff, as a
function of λ. b The real part of
the effective index, neff, as a
function of nanogroove width
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Fig. 4 Comparison of simulation results from FDTD and phase-
matching condition

between the top of the dielectric medium and the top of
the nanogroove. Figure 6 shows resonant wavelengths for
different thicknesses of dielectric medium on top of the
nanogrooves with w = 60 nm, d = 90 nm, and � =
560 nm. We use liquid as an example, with a refractive index
of n = 1.3 [30]. When the liquid thickness increases from
400 to 1200 nm, resonant wavelength oscillates between
1060 and 1110 nm, as shown in Fig. 6. We can see that the
amplitude of oscillation is approximately 40 nm. Figure 7a
shows the reflection curves as the liquid thickness increases.
The blue solid curve shows the reflection curve with a liquid
thickness of 806 nm and a resonant wavelength of 1080 nm.
The purple dashed curve shows the reflection curve with
a larger liquid thickness of 939 nm and a slightly longer
resonant wavelength of 1105 nm. The reason is that the
dielectric layer forms a cavity. At the top of the cavity, the
waves are partly reflected from the interface between liq-
uid and air. At the bottom of the cavity, the waves are partly
reflected from the interface between liquid and Au top sur-
face. A slightly thicker cavity leads to a slightly longer
resonant wavelength. On the other hand, a reduced liquid
thickness of 666 nm leads to a slightly shorter resonant
wavelength of 1060 nm, as indicated by the solid purple
curve. When liquid thickness is 1009 nm, waves in the

Fig. 5 Schematic of nanograting structure covered by a dielectric
medium

Fig. 6 Resonant wavelength versus t when � = 560 nm, w = 60 nm,
and d = 90 nm

cavity destructively interfere with each other and the reso-
nant wavelength comes back to 1080 nm. Hence, as liquid
thickness changes, the resonant wavelengths are bound by

Fig. 7 a Reflection versus wavelength when t changes with � =
560 nm, w = 60 nm, and d = 90 nm. The resonant wavelengths are
bound by the plus signs as t changes. b Normalized |E/E0|2 along z-
axis both inside and above the liquid at x = 0. Blue and red dashed
lines indicate the locations of t = 806 and 1009 nm, respectively
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the plus signs in Fig. 7a. We also show the reflection
curve for liquid of infinite thickness with no cavity effect
as the black dash-dotted curve. Note that the minimum
point of the black dash-dotted curve locates at the center
of the plus signs, which confirms that the resonant wave-
length for a nanograting structure without cavity effect is
1080 nm.

Figure 7b shows the electric field profile both inside and
above the liquid at the resonant wavelength when liquid
thicknesses are 806 and 1009 nm, corresponding to the cases
of constructive interference and destructive interference,
respectively, for the waves inside the cavity of the dielec-
tric layer. The electric field magnitude is larger for the blue
curve inside the cavity when the liquid thickness is 806 nm.
The waves experience constructive interference inside the
dielectric cavity, which indicates the phase delay in one
round trip inside the cavity is 2π or a multiple of 2π . With a
slightly stronger field inside the dielectric layer, additional
absorption occurs at the metal surface, leading to a slightly
weaker field above the dielectric layer (z > 806 nm) in
the air. On the other hand, the case with liquid thickness of
1009 nm has a reduced field amplitude inside the dielectric
cavity because waves experience destructive interference.
Note that the difference in electric fields between the cases
with the thicknesses of 806 and 1009 nm is not very large
due to a small difference in the refractive indices of liquid
and air. However, this small cavity effect causes oscillations
in the resonant wavelength, as shown in Fig. 6. The large

Fig. 8 a Contour plot of �λ vs.
pitch and width. b Contour plot
of �λ vs. pitch and depth. c
Contour plot of reflection vs.
pitch and width. d Contour plot
of reflection vs. pitch and depth

field magnitude near z = 0, comes from the high plas-
monic field concentration near the corner of the nanograting
structure [26].

We also study the variation in the resonant wavelength,
�λ, which is defined as the maximum variation in resonant
wavelength between liquid thickness of 400 and 1200 nm.
For example, the variation in resonant wavelength, �λ, is
about 40 nm in Fig. 6. Figure 8a and b show the contour
plots for variation in resonant wavelength, �λ. We find that
the variation is less than 5 nm, with a large pitch of 1000 nm,
a small nanogroove width of 60 nm, and a small nanogroove
depth of 90 nm. A small variation occurs with a large pitch,
a small nanogroove width, and a small nanogroove depth
for a small reflection, as shown in Fig. 8c, d. When the
reflection is small, most of the power is absorbed by the
nanogroove. The cavity effect has little impact on the res-
onant wavelength. We use liquid as an example for thin
dielectric layer, with a refractive index of 1.3, for the con-
tour plots in Fig. 8. Our analysis can be generalized to other
thin dielectric media with different refractive indices. We
also try a different refractive index of 1.35 and obtain results
similar to the results shown in Fig. 8.

Sensitivity and Figure of Merit

Next, we study the resonant wavelength when the refractive
index of the liquid changes. Figure 9a shows results using
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Fig. 9 a Resonant wavelength
changes as refractive index
changes. b The resonant
wavelength as a function of
refractive index when
� = 1000 nm, w = 60 nm,
d = 90 nm, and t = 800 nm

the nanograting structure with � = 1000 nm, w = 60 nm,
d = 90 nm, and t = 800 nm. Resonant wavelength varies
from 1382 to 1435 nm, corresponding to the variations of
the refractive index from 1.3 to 1.35. Hence, the refractive
index of the dielectric medium can be determined by the res-
onant wavelength. Sensitivity, which is defined as the ratio
of the change in wavelength to the change in refractive index
unit (RIU), S = �λ/�n , is approximately 1050 nm/RIU,
as shown in Fig. 9b. When a plasmonic sensor is covered
by a dielectric medium, such as liquid, the thickness of the
liquid might not be determined accurately. Hence, small
variations in resonant wavelength would be preferred with
changes in thickness of the dielectric medium. In this case,
variations in thickness of the liquid will lead to a maximum
change of 5 nm in resonant wavelength according to Fig. 8,
which may cause a maximum error in estimation of a refrac-
tive index of 0.005. Note that previously reported sensors
had sensitivities of 235 nm/RIU in a nanoparticle sensor
[31], 400 nm/RIU in a circular nanohole arrays sensor [32]
and infrared perfect absorber [33], 450 nm/RIU in nanohole
arrays [34], 600 nm/RIU in a double-hole arrays sensor [35]
and nanobar array plasmonic sensor [36], 1015 nm/RIU
mushroom arrays [37], 1110 nm/RIU in a two-dimensional
nanohole array sensor [38], and 1190 nm/RIU in an array of
split ring resonators [39].

The figure of merit (FOM) is often used to evaluate
the overall performance of the plasmonic sensors. FOM
is defined as the ratio of sensitivity to full-wave half-
maximum (FWHM) of the reflection curve, S/FWHM [36,
40, 41]. Figure 10 shows contour plots of the FOM as a
function of nanogroove width, w, nanogroove depth, d , and
nanogroove pitch, �. From the contour plots, we can see
that FOM is larger with a larger pitch, a smaller nanogroove
width, and a smaller nanogroove depth. We use reflec-
tion curves in Fig. 11 to explain the FOM in Fig. 10. As
pitch increases, FWHM decreases and FOM increases as
shown in Fig. 11a. The momentum conservation for the cou-
pling of surface plasmons on the metal-dielectric surface
requires m · kg = ksp, where kg is defined as 2π/�, ksp =
k0[εiεm/(εi + εm)]1/2 is the propagation constant for the
surface plasmon wave, and m is a positive integer [26, 27].
Simple calculation for momentum conservation shows that
� is approximately 1000 nm for a wavelength of 1300 nm,
which indicates that strong resonance occurs with a larger
� approaching 1000 nm. Figure 11b shows that FWHM
decreases and FOM increases as width, w, decreases. The
structure with a small width yields strong field and a strong
resonance, which leads to a small FWHM and a large FOM
[36, 42]. Note that the change in resonant wavelength is
about 40 nm, when the width changes from 60 to 120 nm.

Fig. 10 a Contour plot of FOM
when d = 90 nm. b Contour
plot of FOM when w = 60 nm
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Fig. 11 a Reflection with different � when d = 90 nm and w = 60 nm. b Reflection with different w when � = 560 nm and d = 90 nm. c
Reflection with different d when � = 560 nm and w = 60 nm

This amount of change is consistent with the amount of
change shown in Fig. 4. Figure 11c shows that FWHM
decreases and FOM increases as depth, d , decreases. The
reason is that the short depth in nanogroove leads to a low
propagation loss in surface plasmon waves and a strong
resonance, which leads to a small FWHM and a large
FOM [43]. Note that the change of FOM is mainly dom-
inated by the relative change of FWHM in the parameter
range considered here. The relative change in sensitiv-
ity, S, is only about 20 % of the relative change in the
FWHM.

The Rounded Corners in Nanogrooves

During the fabrication process, nanograting corners can-
not be extremely sharp. In this part of analysis, we study
the impact of rounded corners on resonant wavelength in
nanograting structures. Figure 12a shows reflection curves
as a function of wavelength for different radii of the rounded
corners, as shown in inset. The thickness of the liquid is
800 nm. As the radii of the rounded corners increase, the
resonant wavelength decreases. This is caused by effec-
tive reduction in the depth of the nanogroove. Figure 12b
shows resonant wavelength as a function of radii of the
rounded corners, r , as red circles. The solid line shows the
linear regression fit, λ = λ0 − Ar , where λ0 = 1080 nm
is the resonant wavelength with an extremely sharp corner
(r = 0) and A = 2 is the fitting slope. Hence, rounded
corners with a small radius of r will lead to a shift in
the resonant wavelength of nearly twice the radius, 2r . We
also compare the slope in Fig. 12b with the ratio of
the change in resonant wavelength to the change in
nanogroove depth as shown in Fig. 11c. The rounded
corners with a small radius of r effectively reduce the
nanogroove depth by about 0.2r , taking into account
the rounded corners in both top and bottom of the
nanogroove.

Conclusion

We show the analysis of the resonant conditions for
nanograting structures. Simulation data from FDTD agrees
well with the phase-matching condition, using the reflec-
tion coefficients calculated from RCWA. We also study the
impact of a thin dielectric medium above the nanogrooves

Fig. 12 a Resonant wavelength changes as radius of round corner
changes. Inset shows the rounded corner with radius of r . b Resonant
wavelength versus radius when � = 560 nm, w = 60 nm, d = 90 nm,
and t = 800 nm
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on resonant wavelength, and we find that the resonant wave-
length oscillates as the thickness of the dielectric medium
increases. The reason is that the dielectric medium above
the grooves form a cavity, and increasing the thickness
of the dielectric medium causes the waves in the dielec-
tric layer to change between constructive interference and
destructive interference. We find in the structure that the
minimum amplitude of oscillation in the resonant wave-
length is less than 5 nm. The physical reason comes from
the minimum reflection in the nanograting structure, so the
cavity effect in the dielectric layer is small. A plasmonic
sensor with small oscillations in the resonant wavelength as
the thickness of the dielectric medium changes is preferred
in order to reduce the measurement error due to an uncertain
thickness of the dielectric medium. This device has good
sensitivity and FOM values compared to other plasmonic
sensors. Finally, we study the effect of rounded corners. We
find that the rounded corners with a small radius of r effec-
tively reduce the nanogroove depth by about 0.2r . These
results will lead to a better understanding of the accuracy of
plasmonic sensors covered by dielectric media.
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